Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(41): 94878-94889, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542688

RESUMO

The microbial community of the landfill undergoing aerobic stabilization process by aeration engineering was investigated. The municipal solid wastes (MSWs) were sampled from two aeration well sites with different landfill temperatures (65.5°C and 41.7°C) under higher and lower stabilization level. The physical component, chemical property, and microbial population of MSWs were analyzed and compared. The result showed that the phylum Firmicutes was dominant in the aerobic landfill; and the genus Weissella and Syntrophaceticus were more abundant in high, and low temperature site, respectively. The bacterial distribution showed difference on two temperature sites and four landfill depths, mainly affected by the ammonia-nitrogen and moisture content of MSWs. The ecological profiles of the microorganisms responded the aeration engineering were predicted. The anaerobic hydrolytic and acetogenic microorganisms were decreased in abundance, while the facultative Lactobacillus increased when the landfill under a higher stabilization level. The function abundances of methane oxidation, sulfide oxidation, and aerobic chemoheterotrophy were enriched by aeration engineering, which was the microbial mechanism for accelerating the stabilization process of landfill.


Assuntos
Bactérias , Oxigênio , Instalações de Eliminação de Resíduos , Resíduos Sólidos , Pequim , Bactérias/classificação , Bactérias/metabolismo , Engenharia Sanitária/métodos , Biodegradação Ambiental
2.
Front Microbiol ; 14: 1188229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389339

RESUMO

Introduction: Microbes play key roles in maintaining soil ecological functions. Petroleum hydrocarbon contamination is expected to affect microbial ecological characteristics and the ecological services they provide. In this study, the multifunctionalities of contaminated and uncontaminated soils in an aged petroleum hydrocarbon-contaminated field and their correlation with soil microbial characteristics were analyzed to explore the effect of petroleum hydrocarbons on soil microbes. Methods: Soil physicochemical parameters were determined to calculate soil multifunctionalities. In addition, 16S high-throughput sequencing technology and bioinformation analysis were used to explore microbial characteristics. Results: The results indicated that high concentrations of petroleum hydrocarbons (565-3,613 mg•kg-1, high contamination) reduced soil multifunctionality, while low concentrations of petroleum hydrocarbons (13-408 mg•kg-1, light contamination) might increase soil multifunctionality. In addition, light petroleum hydrocarbon contamination increased the richness and evenness of microbial community (p < 0.01), enhanced the microbial interactions and widened the niche breadth of keystone genus, while high petroleum hydrocarbon contamination reduced the richness of the microbial community (p < 0.05), simplified the microbial co-occurrence network, and increased the niche overlap of keystone genus. Conclusion: Our study demonstrates that light petroleum hydrocarbon contamination has a certain improvement effect on soil multifunctionalities and microbial characteristics. While high contamination shows an inhibitory effect on soil multifunctionalities and microbial characteristics, which has significance for the protection and management of petroleum hydrocarbon-contaminated soil.

3.
Front Cell Dev Biol ; 9: 718851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34676208

RESUMO

Proopiomelanocortin-positive amacrine cells (POMC ACs) were first discovered in adult mouse retinas in 2010; however, the development of POMC-ACs has not been studied. We bred POMC-EGFP mice to label POMC-positive cells and investigated the development of POMC neurons from embryonic to adult stages. We found that POMC neuron development is mainly divided into three stages: the embryonic stage, the closed-eye stage, and the open-eye stage. Each stage has unique characteristics. In the embryonic stage, POMC neurons appeared in the retina at about E13. There was a cell number developmental peak at E15, followed by a steep decline at E16. POMC neurons showed a large soma and increased spine numbers at the closed-eye stage, and two dendritic sublaminas formed in the inner plexiform layer (IPL). The appearance and increased soma size and dendrite numbers did not occur continuously in space. We found that the soma number was asymmetric between the superior and inferior retinas according to the developmental topographic map. Density peaked in the superior retina, which existed persistently in the retinal ganglion cell layer (GCL), but disappeared from the inner nuclear layer (INL) at about P6. At the same time, the soma distribution in the INL was the most regular. At the open-eye stage, the development of POMC neurons was nearly stable only with only an increase in the IPL width, which increased the soma-dendrite distance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...